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Abstract. To study the performance of genotypes under different growing conditions, plant breeders evaluate their
germplasm in multi-environment trials. These trials produce genotype × environment data. We present statistical
models for the analysis of such data that differ in the extent to which additional genetic, physiological, and
environmental information is incorporated into the model formulation. The simplest model in our exposition is
the additive 2-way analysis of variance model, without genotype × environment interaction, and with parameters
whose interpretation depends strongly on the set of included genotypes and environments. The most complicated
model is a synthesis of a multiple quantitative trait locus (QTL) model and an eco-physiological model to describe
a collection of genotypic response curves. Between those extremes, we discuss linear-bilinear models, whose
parameters can only indirectly be related to genetic and physiological information, and factorial regression models
that allow direct incorporation of explicit genetic, physiological, and environmental covariables on the levels of the
genotypic and environmental factors. Factorial regression models are also very suitable for the modelling of QTL
main effects and QTL × environment interaction. Our conclusion is that statistical and physiological models can be
fruitfully combined for the study of genotype × environment interaction.

Additional keywords: AMMI-model, crop growth model, factorial regression, genotype by environment interaction,
multi-environment trial, QTL by environment interaction.

Introduction
A major objective in many advanced plant breeding programs
is to assess the suitability of individual crop genotypes
for agricultural purposes across a range of agro-ecological
conditions. To this purpose, breeders perform so-called
multi-environment trials. In a multi-environment trial, a
set of genotypes is evaluated across several environments
that hopefully represent the environmental range across
which the genotypes should partially (specific adaptation)
or wholly (wide adaptation) perform well. The performance
of genotypes in multi-environment trials is analysed by
statistical models developed to describe and interpret
genotype × environment data. The statistical analysis should
provide estimates for parameters that indicate both how
well genotypes perform on average across the environmental
range and how well they perform in specific environmental
conditions. Traditionally, the statistical parameters used
by breeders to characterise genotypic responses across
environments were largely devoid of physiological meaning.
More recently, it has become popular to use statistical models
whose parameters relate better to physiological knowledge
and that permit varying degrees of integration between

statistical and physiological approaches to description and
prediction of genotypic responses across environments.
In the context of plant breeding, a landmark publication
strongly advocating the integration of statistical and
physiological approaches is the book by Cooper and
Hammer (1996).

This paper discusses various classes of statistical models
for the analysis of genotype × environment data. All the
models can be interpreted in terms of response functions
for individual genotypes to environmental variables. The
differences between the models reside in the amount of
genetic and physiological characterisation of the genotypes,
the amount of physical and meteorological characterisation of
the environments, and the complexity of the response curves.
We intend to show that statistical and physiological models
for the description of genotype × environment data can be
reconciled and combined in a fruitful way.

The additive model in quantitative genetics
and plant breeding

Within plant breeding, a tradition exists to describe
phenotypic responses across environments in terms of

© CSIRO 2005 10.1071/AR05153 0004-9409/05/090883



884 Australian Journal of Agricultural Research F. A. van Eeuwijk et al.

statistical parameters that have well-defined statistical
properties, but that are hard to interpret in physiological
terms. The dominant quantitative genetic paradigm in plant
breeding dictates models for phenotypic expression to
consist of sums of terms that are indexed by genotypes,
environments, or combinations of both. The simplest
model for the description of phenotypic responses across
environments, the additive model, contains only single
indexed terms. For the expected phenotypic response for
genotype i (i = 1, . . . , I) in environment j (j = 1, . . . , J),
µij , we write:

µij = µ + Gi + Ej (1)

where µ is the general mean, Gi is the genotypic main effect
expressed as a deviation from the general mean, and Ej is the
environmental main effect, again expressed as a deviation
from the mean.

Although the statistical description of the additive model
suggests some complexity, the above model merely states
that we might try to describe the phenotypic responses for a
set of genotypes as a set of parallel straight lines, where the
differences between the responses are given by the differences
between the genotypic main effects. To illustrate this, we
consider the increase in the mean response for a genotype i,
when going from environment j to j*, where we assume that j*
represents the better environment (Ej∗ > Ej) : µij∗ − µij =
Ej∗ − Ej . It is obvious that all genotypes will show the
same increase in phenotypic response when going from the
inferior environment j to the superior environment j*. When
the environmental main effect is interpreted as an indicator
of environmental quality, we might say that all genotypes
exhibit the same sensitivity to the environment. To emphasise
the parallel response character of the additive model, we
can write µij = G

′
i + β′

iEj , where G
′
i = µ + Gi, the predicted

mean performance for genotype i across environments, and
the slope β′

i is equal to 1 for all genotypes.
The most curious property of the additive model is

that its parameters suggest a reference to genotypic and
environmental entities outside the model, i.e. there appear
to be things or processes that might be called genetic
(genotypic) in nature as well as environmental. However,
the genotypes in the additive model are nothing more than
the levels of a nominal variable, where the idea is that the
major differences between the levels of that factor reside
ultimately in differences in DNA composition. In the additive
model, the environment is a collection of discrete sets of
conditions under which the plants pertaining to particular
genotypes have been grown. The parameters Gi and Ej

are estimated by averaging over phenotypic observations,
and at no point in this process does something evidently
genetic or environmental enter the calculations. For balanced
data (e.g. all genotype × environment combinations were
observed equally often, without missing values), the estimate
for the main effect of genotype i follows from the average
across environments of the phenotypic observations indexed

by i. Likewise, the estimate for the main effect of environment
j follows from the average across genotypes of observations
indexed by j. Thus, genotypic main effects depend on
the collection of environments that were included in the
experiments, and environmental main effects depend on the
genotypes that were included. Suppose we evaluate yield for
a set of genotypes that consists of 2 subsets: one subset of
genotypes that are tolerant to a major stress factor and another
subset of genotypes that are susceptible to the same stress
factor. Genotypic main effects in the tolerant and susceptible
subset will, other things being equal, be of similar magnitude
as long as the particular environmental stress factor does not
occur in the sample of environments included in the trials.
In contrast, when in at least some of the environments the
pertinent stress factor does occur, the susceptible genotypes
will rank lower than the tolerant ones.

An equivalent argument can be constructed for the
environments. Environments may differ in nutrient and water
availability, but without genotypic variation in sensitivity
to the quality of the environment, the better environments
will not be recognisable for their higher yield, i.e. higher
environmental main effects. Therefore, strictly speaking,
neither the genotypic main effects nor the environmental main
effects represent entities that exist outside of the collection
of genotypes and environments that were included in the
trials and the model for which they have been estimated. The
main purpose of the additive model is to interpret phenotypic
differences in terms of differences between the levels of the
genotypic factor on the one hand and between levels of the
environmental factor on the other hand for the included sets
of genotypes and environments. Of course, the genotypes and
environments in the trials may be chosen to be representative
of some population of interest. For the environments, we then
speak of the target population of environments (Comstock
1977; Chapman et al. 2000a, 2000b, 2000c). For the latter
case, the environmental main effects are often assumed to
follow a normal distribution. Whatever the statistical details,
it may be clear that it will be difficult to encounter in an
individual plant the physiological counterpart of its genotypic
main effect.

Models for interaction using phenotypic
characterisations of the environment

The additive model is an elementary model that is more
important as a didactical tool to introduce statistical
models for genotype × environment data than as a serious
description of such data. The additive model provides
a null model against which to test models that are
more complicated with terms for genotype × environment
interaction. Genotype × environment interaction occurs
whenever genotypes react differently to environmental
changes. So, whenever the difference in phenotypic
performance between two environments j and j* varies
between 2 genotypes i and i*, i.e. µij∗ − µij �= µi∗j∗ − µi∗j ,
the additive model will be inadequate and a more elaborate
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model should be formulated. Traditionally, the additive
model is extended to a full interaction model with double
indexed genotype × environment terms for each combination
of genotype and environment:

µij = µ + Gi + Ej + (GE)ij (2)

In the full interaction model there are as many independent
parameters as genotype × environment combinations and,
from the point of view of parsimony, little has been
accomplished by fitting this model to the data. Predictions
of phenotypic responses for environments that were not in
the set of trial environments are impossible, as there will be
no estimates for the particular (GE)ij terms. Compare this
with the situations for which the additive model provides a
good fit. In those cases, rough predictions are possible as
long as the quality of the new environment can be ranked
as being in between 2 environments that were part of the
multi-environment trial.

An alternative, more attractive extension of the
additive model, which, like the additive model, describes
phenotypic responses as straight lines, but allows for
differential environmental sensitivity between genotypes, is
the regression on the mean model, popularised by Finlay
and Wilkinson (1963). The philosophy behind this model
is that in the absence of explicit physical or meteorological
characterisations of an environment, a good approximation
to the general biological quality of the environment is
given by the average phenotypic performance across the
genotypes. The phenotypic responses of individual genotypes
are then regressed on the average performance, and the
genotype × environment interaction (GEI) expresses itself by
differences in the slopes between the genotypes.

Table 1. Illustration of how genotypic sensitivity depends on composition of
genotype set

Set 1 contains predominantly genotypes tolerant to stress and set 2 predominantly
susceptible genotypes. Sensitivities can be calculated by dividing the difference

in individual performance between non-stress and stress by the average
difference for the corresponding set of genotypes

Genotype Characterisation Performance in Performance Sensitivity
non-stress under stress

environment

Set 1
A Tolerant 7 6 0.5
B Tolerant 7 6 0.5
C Tolerant 7 6 0.5
D Susceptible 8 3 2.5

Average Set 1 Mainly tolerant 7.25 5.25 1.0

Set 2
A Tolerant 7 6 0.25
D Susceptible 8 3 1.25
E Susceptible 8 3 1.25
F Susceptible 8 3 1.25

Average Set 2 Mainly susceptible 7.75 3.75 1.0

An elaborate way to write the regression on the mean
model, that shows the relation with the full interaction
analysis of variance model, is:

µij = µ + Gi + Ej+ βiEj (3)

The GEI is modelled as differential genotypic sensitivity,
represented by the parameters βi, to the environmental
characterisation Ej , with the average sensitivity being
zero. A reformulation of the model makes evident the
non-parallel straight lines nature of the regression on
the mean model µij = µ + Gi + Ej + βiEj = (µ + Gi) +
(1 + βi)Ej = G

′
i + β′

iEj , where the average sensitivity now

will be unity; β′
i = 1. When all βi are zero, or all β′

i are 1, the
regression on the mean model reduces to the additive model.
Alternatively, the regression on the mean model will be
equivalent to the full interaction model when (GE)ij = βiEj

for all genotype × environment combinations.
The estimate for the sensitivity, or responsiveness, to

the environment of individual genotypes depends on the
average potential of the genotypes to change in relation to
the environmental conditions. Therefore, the interpretation
of the magnitudes of individual genotypic sensitivities should
take into account the composition of the genotype and
environment sets included in the multi-environment trial.
For example, one susceptible genotype in a collection of
otherwise tolerant genotypes evaluated under environmental
conditions that include at least one instance of the pertinent
stress will have a far higher estimated environmental
sensitivity than the same susceptible genotype evaluated
within a predominantly susceptible set of genotypes. Table 1
shows an example of this principle for 2 fictitious data sets.
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Like the additive model, the regression on the mean model
can be used for prediction to the extent that new environments
can be ranked with respect to the environments included in
the trial set.

The regression on the mean model partitions the
genotype × environment interaction term, (GE)ij , in the
full interaction model into a part due to regression on
the environmental main effect (environmental index), βiEj ,
and a residual (GE)∗ij . This residual is usually interpreted as
a random variable with zero mean, leading to the absence of
this term in the expectation, µij . The statistical success of the
regression on the mean model depends on the proportion of
genotype × environment interaction that is described by the
differential environmental sensitivity of the genotypes, or,
equivalently, by the quality of the environmental effect as a
reflection of the environmental forces that cause phenotypic
differences between genotypes. The regression on the mean
model provides only limited flexibility for describing GEI,
because of its rather specific, 1-dimensional incorporation of
the environmental factors affecting the phenotypic responses.
However, other models from the model class of which the
regression on the mean model is a member, the class of
linear-bilinear models (Gabriel 1978, 1998; van Eeuwijk
1995a; Denis and Gower 1996; Crossa and Cornelius
2002), allow considerably more flexible characterisations
of the environment. All these models describe GEI
by differential genotypic sensitivities to environmental
characterisations that are derived from the phenotypic
data themselves.

Linear-bilinear models consist of sums of single indexed
additive and multiplicative terms. In the regression on the
mean model, using the regression formulation, G

′
i + β′

iEj ,
the linear part of the model is given by G

′
i, whereas the

bilinear part is equal to β′
iEj . The term β′

iEj contains
genotypic and environmental parameters that need to be
estimated simultaneously. The name bilinear models stems
from the observation that these models become standard
linear models in the genotypic parameters upon fixation of
the environmental parameters and vice versa. This property
also forms the basis of a general estimating procedure for the
parameters (Gabriel and Zamir 1979; van Eeuwijk 1995b;
Gabriel 1998).

In comparison with the regression on the mean model,
more flexible linear-bilinear models for the modelling of GEI
can be constructed by the inclusion of additional bilinear
terms. A popular example of a linear-bilinear model with a
varying number of bilinear terms for the description of GEI is
the additive main effects and multiplicative interaction effects
model, best known under its acronym AMMI (Gollob 1968;
Mandel 1969; Gabriel 1978; Gauch 1988). The model can be
formulated as:

µij = µ + Gi + Ej +
K∑

k=1

akibkj (4)

where aki and bkj are genotypic and environmental parameters
(scores) for the bilinear term k, and where K indicates the
number of multiplicative terms necessary for an adequate
description of the genotype × environment interaction.
Following the same logic as for the regression on the mean
model, the genotypic scores, aki, can be interpreted as
sensitivities or responsiveness, and the environmental scores,
bkj , are environmental characterisations. The environmental
scores for the first bilinear term represent the best
environmental characterisation possible for the description
of the genotype × environment interaction in terms of
differences in genotypic sensitivity. The second bilinear term
represents the second best environmental characterisation,
etc. The environmental characterisations in bilinear terms
are acquired by minimisation of a least-squares criterion,
and may not always have an immediate physiological
interpretation. Still, regressing the environmental scores
on explicit environmental measurements usually allows
the genotype × environment interaction to be related to
physiological processes (Vargas et al. 1999).

Models for interaction using explicit environmental
characterisations

Bilinear models for interaction are very useful for a first
round of exploratory analyses in which differences between
genotypes are modelled by sensitivities to hypothetical
environmental characterisations that describe a maximum
amount of the genotype × environment interaction. Whether
the results of analyses by bilinear models contain any
physiological interest depends on the relation that the
environmental main effects and scores bear to a description
of the environment in terms of external, physical, and
meteorological variables. For example, suppose that it is
concluded from the analysis of a particular data set that the
regression on the mean model gives an adequate description
of the genotype × environment interaction and that the
environmental main effect is primarily driven by average daily
temperature, Tj . We then think of Ej in the regression on
the mean model as a function of Tj , Ej = f (Tj), and write:
µij = G

′
i + β′

iEj = G
′
i + β′

if (Tj). The latter model would
definitely be a lot closer to the kind of models that
physiologists are used to working with than the purely
phenotypic regression on the mean model. In addition, the
latter kind of model would allow the phenotypic responses to
be non-linear, i.e. to become response curves as exponential,
logistic, Gompertz, Gaussian, or some other suitable response
curve, as long as the curve parameters are genotype-
independent.

The simplest way of replacing the environmental effect
by a function of an explicit environmental variable, is by
using the identity function for f(.). For example, describing
the interaction as driven by temperature would lead us to
µij = G

′
i + β′

izj , where zj is the temperature in environment
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j. The extension to more than one environmental variable is
straightforward. Suppose that the genotype × environment
interaction is driven by both the average temperature,
z1j , and the amount of rainfall, z2j , then the following
model might be appropriate: µij = G

′
i + β′

1iz1j + β′
2iz2j ,

where β′
1i and β′

2i are the sensitivities to temperature and
rainfall, respectively.

Contrary to what physiologists would do, plant breeders
customarily want to correct the phenotypic data for the
environmental main effect, and thereby concentrate on that
part of the phenotypic differences that is caused by genotype-
related sources of variation (Gi and (GE)ij). Plant breeders are
not particularly interested in a (physiological) model for the
trial mean; they especially want to understand the differences
between genotypes. When we follow that convention
and include the environmental main effect, the above
model becomes:

µij = µ + Gi + Ej + β1iz1j + β2iz2j (5)

The resemblance of the latter regression-like model with
a linear-bilinear model with two bilinear terms for the
interaction, µij = µ + Gi + Ej + a1ib1j + a2ib2j , is evident.
The environmental scores b1j and b2j are, theoretically,
the best environmental covariables for explaining GEI,
but for a physiological understanding of the GEI, these
scores should be interpreted in terms of measured or
simulated environmental characterisations. One way to do
so would be by regressing the environmental scores on
a set of environmental covariables. In exceptional cases,
the environmental scores of the linear-bilinear model can
be replaced by environmental covariables without loss of
descriptive adequacy for the GEI. In such cases, a physiology-
inspired description of the GEI will coincide with the best
statistical description for the particular data.

Statistical models for phenotypic responses across
environments that describe genotype × environment
interaction by differential sensitivity to explicit
environmental variables belong to the class of factorial
regression models (Denis 1988; van Eeuwijk et al. 1996).
The name is derived from the inclusion of covariables on
the levels of the classifying factors in analysis of variance
models. The critical issue for factorial regression models is
the choice of covariables. In former days, in the absence of
explicit information about the environment, the regression
on the mean model, or another linear-bilinear model, was
an obligatory choice. As a continuous registration of the
environment has come within reach of many plant breeding
trials, the question nowadays has become how to summarise
the most relevant features of the environment from the point
of view of genotype × environment interaction (Cooper
and Hammer 1996). Exclusively statistical approaches as
variable subset-selection procedures are not very satisfactory,
because they result mostly in physiologically difficult-to-
interpret models. The most promising way forwards seems

to be the use of physiological knowledge to delimit the
vast amount of potentially useful sets of environmental
covariables. Examples of the use of factorial regression
guided by physiological knowledge to analyse adaptation
and genotype × environment interaction in barley can be
found in Voltas et al. (1999a, 1999b).

Instead of physical measurements of the environment,
one could also use simulated characterisations of the
environments in a multi-environment trial. Crop growth
models can be used to integrate environmental information
over the growing season, which may result in a
characterisation of the environments in terms of different
stress classes (Chapman et al. 2000b). This type of
environmental characterisation can then be introduced as
a categorical variable in a factorial regression model. Of
course, when a crop growth model produces a quantitative
stress index, this index could also be included in a factorial
regression to model GEI. Note that although environmental
covariables enter the factorial regression models linearly,
there is no restriction on the phenotypic responses of having to
be linear as well, as also quadratic and higher order terms can
be included into the model. Furthermore, response surfaces
based on multiple environmental covariables are equally
feasible, provided the data contain enough information for
the estimation of all the parameters.

Models for interaction using explicit genotypic and
environmental characterisations

The inclusion of covariables on factor levels in analysis
of variance models for the description of GEI is not
only useful for the environmental factor(s), but is equally
recommendable for the genotypic factor(s). For example,
a laboratory test may have been developed to assess the
tolerance of a set of genotypes against a particular stress
factor and one wants to include the results of such a test in
an analysis of variance model for a multi-environment trial
on yield to describe genotypic differences dependent on the
environment. Assume the values of the laboratory tests are
expressed by the genotypic covariable x, with values xi, then
we can incorporate this covariable in the 2-way analysis of
variance model as follows:

µij = µ + Gi + Ej + xiρj (6)

The parameters ρj then relate to the severity of the
particular stress in environment j.

Genotypic covariables can also be used for the description
of differences in genotypic means across environments:

µij = µ + xiρ + G∗
i + Ej (7)

where G∗
i is a residual genotypic main effect that should be

smaller when the description by xi is more successful. An
interesting application of this type of factorial regression
model is in the detection and localisation of quantitative
trait loci (QTLs). The regression-based approaches to QTL
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mapping, as initiated by Haley and Knott (1992), can be seen
as a form of factorial regression with genotypic covariables
that are functions of marker genotypes and the type of
QTL effect (additive, dominance, epistasis). Consider a
co-dominant marker that can assume the genotypes MM,
Mm, and mm. A genetic covariable, or genetic predictor,
for estimating the additive genetic effects of a putative QTL
at the position of this marker can be constructed by giving
the predictor, x, individual values, xi, that correspond to
the number of M alleles in the specific plants: xi = 2 for
genotypes of the MM type, xi = 1 for Mm, and xi = 0 for mm.
For statistical reasons, it is often preferable to work with
the equivalent set of values of 1 for MM, 0 for Mm, and
−1 for mm when estimating the additive genetic effects of
a QTL, especially when one also wants to include a genetic
predictor for dominance effects, where the latter has typically
the value 1 for Mm genotypes, and 0 for MM and mm
genotypes. By constructing genetic predictors at all marker
positions, a genome scan for QTLs by marker regression
can be performed. Effectively, the genome scan consists of
the fitting of model (7), with xi derived from local marker
genotype information, while testing for the QTL effect, ρ.
Genetic predictors in between marker positions, necessary
for simple interval mapping, can be constructed as functions
of the probabilities of QTL genotypes given flanking
markers. Lynch and Walsh (1998) provide an introduction
to procedures for constructing genetic predictors, and Jiang
and Zeng (1997) present a very general algorithm for all kinds
of biparental segregating populations. Composite interval
mapping requires the inclusion of so-called co-factors,
markers that correct for QTLs elsewhere on the genome.
These co-factors can be chosen to be the genetic predictors
corresponding to the QTLs identified during a genome scan
by marker regression or simple interval mapping. In model
form we write µij = µ + ∑

c∈C xc ρc + xi ρ + G∗
i + Ej ,

where the terms xcρc correct for putative QTLs elsewhere
on the genome, C is the full set of such putative QTLs, and
xiρ is the QTL under test.

In the framework of factorial regression, modelling of
QTL × environment interaction is a natural extension of
modelling main effect QTLs, i.e. QTLs that are supposed
to have constant expression across environments. A model
with a QTL main effect and QTL × environment interaction
at the same location in the genome can be written as:

µij = µ + xiρ + G∗
i + Ej + xiρj + (GE)∗ij (8)

The (GE)ij from the analysis of variance model is
partitioned in a part due to differential QTL expression, xiρj ,
and a residual, (GE)∗ij , that is usually taken as random and
for that reason then disappears from the expression for the
expectation. In the light of QTL × environment interaction,
the parameter ρj adjusts the average QTL expression
across environments, ρ, to a more appropriate level for
the individual environment j. The QTL × environment

interaction parameters, ρj , can themselves be regressed on an
environmental covariable, z, in an attempt to link differential
QTL expression directly to key environmental factors. The
QTL × environment interaction term xiρj is replaced by a
regression term xi(λ zj) and a residual term xiρ∗

j :

µij = µ + xiρ + G∗
i + Ej + xi(λzj) + xiρ∗

j + (GE)∗ij (9)

The residual term xiρ∗
j will disappear from the expectation

when ρ∗
j is assumed to be random. The parameter λ is a

proportionality constant that determines the extent to which
a unit change in the environmental covariable, z, influences
the effect of a QTL allele substitution.

From a breeding and physiological point of view, the above
model is an interesting option, because it allows the prediction
of differential genotypic responses to environmental changes
from marker information characterising the genotypes and
environmental covariables characterising the environment.
van Eeuwijk et al. (2001b, 2002) give an example of
differential QTL expression in relation to the minimum
temperature during flowering for yield in maize data from
the CIMMYT program on drought stress. Malosetti et al.
(2004) analysed yield data from the North American Barley
Genome Project with added environmental information.
QTL × environment interaction at chromosome 2H was
found to depend on the temperature range during heading
(Fig. 1). A QTL allele substitution increased/decreased
yield with 0.112 ton/ha for every degree Celsius that the
temperature range increased.
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Fig. 1. Regression of QTL × environment interaction effects for
grain yield in barley on the environmental covariable, temperature
range during heading (chromosome 2H). Yield data stem from
10 environments included in the North American Barley Genome
Project. For those environments, additional environmental information
was collected.
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Models for GEI based on QTLs whose expression is a
function of environmental covariables may help to solve
the recurrent discussion on the extent to which input
parameters for crop growth models should be ‘genetic’. The
point of discussion is the idea that input parameters that
exhibit GEI are not ‘genetic’, or not ‘genetic’ enough, to
guarantee the successful application of crop growth models.
However, as far as this dispute relates to predictability
of physiological parameters and yield from genetic and
environmental information, there should not be any problem
with GEI in input parameters, as long as the GEI follows from
differential QTL expression conditional on environmental
covariables. In the latter case, the GEI can be described by the
product of genetic predictor and environmental covariable,
xi λ zj , and requires only an estimate of the unproblematic
proportionality constant λ.

Models for response curves

A drawback of the QTL models described in the previous
paragraph may be that they are linear in the parameters,
whereas most physiological and developmental processes
behave essentially in a non-linear manner in relation to the
environment. Although polynomial expansions can provide
good approximations to those non-linear functions, an
intrinsically non-linear approach will usually be preferable.
Wu et al. (2002) formulated a 2-step approach that
acknowledges the non-linearity of response curves for
physiological traits, but they still use linear QTL models for
the parameters of those curves. Firstly, they fit non-linear
functions to growth data for each of the genotypes separately
and then analyse the estimated parameter vectors jointly
in a multivariate composite interval mapping procedure. A
fully non-linear approach to physiological response curves is
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Fig. 2. Demonstration of QTL allele effects working principally on location (left) and slope (right) of
senescence curves in potato. Solid curves represent QTL genotype as occurring in one parent, and dotted
curves represent the other parent.

presented by Ma et al. (2002). Their methodology is based
on mixture models and an EM algorithm for estimation.
The paper contains an example for logistic growth curves
in poplar. The authors claim that their intrinsically non-
linear approach to the unravelling of the genetic basis of
growth curves has higher power than alternative approaches.
In M. Malosetti and F. A. van Eeuwijk’s unpublished work,
the philosophy proclaimed by Ma et al. (2002) has been
translated into the slightly less demanding non-linear mixed
model framework. The process of senescence in potato was
modelled by a logistic curve for individual diploid potato
genotypes stemming from a biparental cross. The model for
the expectation of the state of senescence for genotype i at
time point j was µij= A + C

1+e−bi(zj−mi)
, where zj is the time

from planting to observation. The lower asymptote, A, and the
difference between lower and upper asymptote, C, were the
same for all genotypes, and the location of the inflection point,
mi (i.e. the time at which the process of senescence reaches
the point half-way between the upper and lower asymptote),
and the slope parameter at this point, bi (i.e. the maximum rate
of senescence), were genotype specific. The values for slope
and inflection points were modelled on genetic predictors
inside the non-linear mixed model, i.e. different QTL alleles
had different average slopes and inflection points, and the
genotype-specific deviations from those averages were given
a bivariate normal distribution. Various QTLs were detected
for both slopes and inflection points. As the QTLs for
slopes and inflection points were largely uncorrelated, rate
and timing of the senescence process seemed amenable to
independent genetic improvement. Figure 2 shows the allelic
effects of a QTL with an effect principally on the location
of the inflection point and another QTL affecting mainly the
slope of the senescence curve.
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The non-linear QTL models of Ma et al. (2002) and
M. Malosetti and F. A. van Eeuwijk (unpublished data)
provide powerful methods for eco-physiologically inspired
genetic models for differential phenotypic expression in
relation to environmental variables and (developmental) time.
However, it cannot be denied that these models require
a considerable amount of statistical skill for successful
application. Therefore, it is reassuring that the simpler
2-step approach that first estimates the parameters in non-
linear response curves for individual genotypes by standard
non-linear regression methodology and next searches for
the genetic basis of those estimated parameters by applying
standard QTL mapping methods, before feeding the QTL-
based parameters back into the eco-physiological crop
model, also produces satisfactory results. Yin et al. (2005)
studied days to flowering in barley in this way. They
modelled daily rate of progress towards flowering as a
non-linear function of temperature and photoperiod and
estimated 4 genotypic parameters from a photoperiod-
controlled greenhouse experiment. These 4 genotypic input
parameters were the minimum number of days to flowering at
the optimum temperature and photoperiod, the development
stage at the start of the photoperiod-sensitive phase, the
development stage at the end of the photoperiod-sensitive
phase, and the photoperiod sensitivity. The 4 genotypic
input parameters of the eco-physiological model for days
to flowering were subjected to a QTL analysis, with
each physiological input parameter treated as a classical
phenotypic response. From the QTL models fitted to the
estimated physiological parameters, genotypic predictions
were calculated and fed back into the non-linear eco-
physiological model in the hope that these QTL-based input
parameter values would lead to better predictions of the
time to flowering than the ‘phenotypic’ parameters from
the non-linear regressions. In formula form, the expectation
for days to flowering for genotype i in environment j was
µij = f (x1i(ρ1i), x2i(ρ2i), x3i(ρ3i), x4i(ρ4i), z1j , z2j), with
f(.) the non-linear function producing the days to flowering
from 4 genotypic input traits, x1 to x4, and 2 environmental
covariables, daily temperature and photoperiod, z1 and z2.
The parameter vectors ρ1i to ρ4i represent the QTL basis
of the 4 genotypic input traits. A promising result of this
study was that days to flowering in barley could indeed be
well predicted from the QTL-based eco-physiological model,
so that the combination of marker profile and environmental
characterisation (daily temperature and photoperiod) sufficed
for prediction of days to flowering for new genotypes in new
environments.

Reymond et al. (2003) used a similar combination of eco-
physiological modelling and QTL mapping for the prediction
of GEI for leaf elongation rate in maize (see also Tardieu
et al. 2005). The QTL analysis was performed on parameters
of a linear model for predicting the leaf elongation rate as
affected by meristem temperature, water vapour pressure

difference, and soil water status. The combined QTL-
and eco-physiological model successfully predicted leaf
elongation rates for environments characterised by different
climatic scenarios.

The 2-step approach to combined QTL-eco-physiological
modelling can flexibly be extended to the study of more
complex traits. Traits such as grain yield at the whole-
crop level are the result of interactions among several
physiological processes and their responses to environmental
variables. Phenotypes such as development to flowering
and leaf elongation rate are physiological components that
underlie the formation of crop yield. Several researchers
have emphasised the importance of dissecting a complex
trait into its physiological components to identify QTLs
that have a biological basis (Reymond et al. 2003; Hammer
et al. 2005; Tardieu et al. 2005). A powerful tool for this
dissection could be a crop-growth modelling framework,
where simultaneous equations describing response curves
of component processes to the environment are integrated
according to crop physiological principles (Yin et al. 2004).
Each component is then treated by the approach as outlined
above for barley flowering time and maize leaf elongation
rate. Yin et al. (2000) provided an example of such an
exercise. They concluded that their crop growth models
needed to be upgraded to achieve satisfactory resolution
for dealing with complex traits. As a follow-up, Yin et al.
(2004) discussed philosophy and methodology towards the
development of such upgraded crop models, and recently Yin
and van Laar (2005) introduced the GECROS model, an eco-
physiological simulation model dedicated to the simulation
of GEI. The inadequacy of earlier generations of crop growth
models for addressing GEI was already acknowledged in the
1990s by a number of crop physiologists whose writings are
included in the book by Cooper and Hammer (1996). These
crop physiologists performed a general evaluation of multiple
models and formulated recommendations for research, which
since then has taken off (Hammer et al. 2005). Some key
papers in this new tradition are Cooper et al. (2002a, 2002b)
and Chapman et al. (2002, 2003).

A linkage disequilibrium approach to QTL mapping

The success of the approximate 2-step approaches to
combined QTL-eco-physiological modelling of Reymond
et al. (2003) and Yin et al. (2005), and the 1-step approaches
discussed by Ma et al. (2002), Malosetti et al. (2004),
and M. Malosetti and F. A. van Eeuwijk (unpublished
data), shows that the methodology for the prediction of
complex physiological responses in relation to genetic
and environmental information has become sufficiently
reliable to try its practical implementation in real-life
breeding programs.

A point of concern may be that the present examples of
combined QTL-eco-physiological modelling were all done
on classical segregating populations from biparental crosses.
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The question arises whether the results of such studies can be
extrapolated to other crosses, i.e. other genetic backgrounds.
An alternative to classical QTL studies with offspring from
biparental crosses is linkage disequilibrium or association
studies that look at linkage disequilibrium between markers
and traits in diverse collections of genotypes. A point in
favour of linkage disequilibrium studies is that they can
be done on germplasm that represents a far wider genetic
range than biparental offspring populations. On the negative
side for linkage disequilibrium studies, there is the problem
that linkage disequilibrium between markers and traits in
diverse collections of genotypes does not necessarily follow
from genetic linkage between marker and QTL. However,
there are various ways to cope with that disadvantage. The
work by Kraakman et al. (2004) illustrates the potential of a
linkage disequilibrium approach for QTL-eco-physiological
modelling. Danish variety trial yield data, spanning the period
1993–2000, on 146 modern 2-row spring barley cultivars,
representing the current commercial germplasm in Europe,
were used to estimate mean performance, adaptability (slopes
of the regression on the mean model), and stability (variance
around the regression on the mean line, Eqn 3). The cultivars
were genotyped with 236 AFLP-markers, of which 123 were
identified on an integrated map. Regression of the traits on
individual marker data disclosed marker–trait associations
for mean yield and yield stability. Many of the associated
markers were located in regions where earlier QTLs were
found for yield and yield components. To study the oligogenic
base of the traits, multiple linear regression of the traits
on markers was carried out using stepwise selection. By
this procedure, 18–20 markers were selected to account
for 40–58% of the variation in the studied complex traits.
It was concluded that linkage disequilibrium approaches
constitute a viable alternative to classical QTL approaches,
especially for complex traits with costly measurements.
As statistical models for linkage disequilibrium studies are
very comparable with the models for classical QTL studies,
the theoretical way forwards to the integration of QTL-
modelling and eco-physiological modelling would seem to be
the application of 1-step QTL-eco-physiological models in a
linkage disequilibrium context, using diverse collections of
genotypes that are known to exhibit interesting physiological
contrasts on a phenotypic level.

Discussion

The treatment of the linear models in this paper was restricted
to the modelling of the expected response, or mean, in its
dependence on genotypic and environmental covariables,
and little or no attention was given to variance-covariance
aspects of the data. When we write the model for the
phenotype of genotype i in environment j as Pij = µij + εij ,
where εij is the error term, the statistical modelling for
multi-environment trial data consists in first finding an
adequate variance-covariance model for εij , after which

the search for a parsimonious model for µij can start.
The final choice of variance-covariance model can have
important implications for the conclusions on the structure
of the model for the mean. In the case of QTL modelling,
QTLs may erroneously be declared significant or non-
significant because of over/underestimation of effect sizes
and standard errors (Malosetti et al. 2004; Piepho and
Pillen 2004). Standard linear models assume that the error
terms are independent and have constant variance. For the
modelling of multi-environment trials, these assumptions
are overly simplistic as variances and correlations tend to
be heterogeneous across environments (Smith 1999; van
Eeuwijk et al. 2001a). The mixed model framework, that
combines modelling of mean and variance, provides a more
appropriate modelling environment for GEI and QEI. Mixed
models allow the investigation of the structure of the mean,
including the genetic basis of complex traits in the form
of sets of QTLs, while simultaneously offering flexibility
with regard to assumptions on heterogeneity in residual
(polygenic) variances and correlations across environments.
Some examples of the application of mixed models to QTL
mapping for multi-environment trials are Piepho (2000),
Verbyla et al. (2003), Malosetti et al. (2004), and Piepho and
Pillen (2004).

Linear models constitute the basic vehicle within
quantitative genetics, but are often thought to be badly
equipped for predictive gene-to-phenotype modelling of
complex traits, where we think of a gene-to-phenotype model
as a model that specifies trait performance by the outcome
of the combined effect of a set of genes (Cooper et al.
2002a, 2002b, 2005). One reason for the inadequacy of
linear models would be the supposed difficulties in mutually
dealing with interactions between genes and between genes
and environments (Cooper et al. 2005). Within a crop growth
model such interactions will arise as an emergent property
of the framework (Cooper et al. 2002a, 2002b; Yin et al.
2004; Hammer et al. 2005). Furthermore, the number of
model terms to deal with such interactions in linear models
would increase rapidly to impractical levels. In contrast,
within gene-networks, interactions between genes form the
default situation and additivity/linearity is the derived, more
complex situation (Welch et al. 2005). It is true that within
standard linear models the network-like relationships with
feed-back loops that characterise crop growth models and
gene networks do not have a natural counterpart. On the
other hand, this paper contains examples that show how
regression structures for GEI and QEI in linear models can
closely mimic physiological responses if variable searches
are initiated from sets of physiologically relevant genotypic
and environmental covariables. For the composition of
such sets of covariables the involvement of physiologists
is essential. Linear models can be quite successful in the
description of GEI and QEI when the modelling of interaction
terms is based on physiological ‘control equations’ or
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‘meta-mechanisms’. Hammer et al. (2005) emphasise the
importance of the quantification of the phenotypic response
at a given time as a function of environmental inputs,
i.e. control equations, to arrive at a dissection of the complex
phenotype that produces intrinsically stable QTLs. Tardieu
et al. (2005) see the legitimacy of meta-mechanisms, control
equations at the plant level that make the plant respond in a
predictable way to environmental changes, in their stability
across environmental scenarios and their compatibility with
physiological knowledge. Therefore, the statistical modelling
of GEI and QEI should closely follow attempts at the
definition of control equations and meta-mechanisms by
physiologists. The advantage of placing such physiological
knowledge within a statistical framework is that the powerful
apparatus for inference that accompanies (mixed) linear
models will be available for the exploration of the genetic base
of complex traits in direct interaction with environmental
triggers, growth factors, and limitations.

Gene × environment interactions thus seem amenable to
satisfactory representation by (mixed) linear models. For the
modelling of interactions between genes (QTLs), the number
of parameters looks prohibitive for incorporation in linear
models. However, by imposing penalties on the estimates for
such interactions, genome screens on epistatic interactions
become feasible (Boer et al. 2002). Such penalties can be
translated into a mixed model framework, a topic that we
are presently studying. Selection on epistatic interactions
at a phenotypic level is hindered by the practical problems
in obtaining reliable estimates of epistatic variances (Walsh
2005), but utilisation of epistatic interactions by construction
of genotypes containing synergistic alleles at different QTLs
should be within reach.

To develop an appreciation of the predictive power of
some classical linear and bilinear models we have composed
Table 2. In Table 2 we concentrate on the predictions of
genotypic differences for environments that were not used in

Table 2. Expressions for genotypic differences in the evaluation environment j, according to different linear and bilinear models for
the analysis of multi-environment trials, the possibility of predictions for a new environment j*, and the qualification of the models as

gene-to-phenotype (GP) models
AMMI, Additive main effects and multiplicative interaction; FR, factorial regression

ModelA Genotypic difference in env. j Prediction for env. j* GP
model

Additive (1) {Gi − Gi∗ } Same as for env. j No
Full interaction (2) {Gi − Gi∗ } + {(GE)ij − (GE)i∗j} Impossible No
Regression on the mean (3) {Gi − Gi∗ } + {(βi − βi∗ )Ej} Only when env. j is similar to env. j* No
AMMI with 2 bilinear terms (4) {Gi − Gi∗ } + {(a1i − a1i∗ )b1j} + {(a2i − a2i∗ )b2j} Only when env. j is similar to env. j* No
FR with environmental covariable (5) {Gi − Gi∗ } + {(βi − βi∗ )zj} Replace zj by zj∗ No
FR with genotypic covariable (6) {Gi − Gi∗ } + {(xi − xi∗ )ρj} Only when env. j is similar to env. j* No
Single QTL with only main effect (7) {(xi − xi∗ )ρ} Same as for env. j Yes
Single QTL with QEI (8) {(xi − xi∗ )ρ} + {(xi − xi∗ )ρj} Only when env. j is similar to env. j* Yes
Single QTL with QEI as regression on {(xi − xi∗ )ρ} + {λ(xi − xi∗ )zj} Replace zj by zj∗ Yes

environmental covariable (9)

ANumber in parentheses is most appropriate equation number in text.

the estimation of the genotypic parameters that characterise
the response to the environment. The only model that is
devoid of any predictive power is the full interaction model
since this model requires the estimation of parameters for
each individual genotype × environment combination that
is considered. Maybe somewhat surprisingly to many, the
regression on the mean model, the AMMI model, and the
factorial regression model with a genotypic covariable for
GEI, all can produce predictions of genotypic differences for
new environments as long as those new environments can
somehow be identified as being similar to environments that
were used in the fit of the model to the multi-environment
data. This requirement emphasises the important role of
environmental characterisation in the analysis and utilisation
of knowledge of GEI and QEI. We acknowledge that in
most cases the assessment of testing environments and new
environments being similar contains a subjective element, but
it is certainly not impossible. See Hammer et al. (2005) for
an illustrative example of how this approach can be applied to
study GEI and QEI. In addition to the just-mentioned models,
a factorial regression model describing QEI can also be used
for this coarse kind of prediction. The trick then consists in
the decision of whether in the new environment a similar kind
of QEI can be expected as in one of the test environments.
Most credible are the predictive powers of factorial regression
models including environmental covariables for GEI and
QEI, especially when these statistical models are based on
physiological control equations. In the last column of Table 2,
it is indicated whether the model would classify as a gene-
to-phenotype model. For this qualification to be positive, the
model would need to bear a gene or QTL representation, and
so only the last 3 models would classify.

Nevertheless, the difference between ‘phenotypic’ models
for GEI and gene-to-phenotype models for QEI seems,
especially within the context of statistical modelling, sooner
gradual, i.e. representing a smooth transition, than essential,
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i.e. an abrupt difference. Linear models can cover a wide
range of applications, including the modelling of the
genetic basis of complex traits in relation to environmental
factors. Gene × environment and genotype × environment
interactions can be catered for in ways reminiscent of the
incorporation of such interactions in crop growth models.
Gene × gene and gene × genetic background interactions can
be dealt with using penalties on parameter estimates thereby
restraining the effective number of parameters. The largest
challenges for statistical models lie in representations of
networks and non-linear relations. However, the development
of graphical models (for an overview see Edwards 2000),
generalised linear (mixed) models, and non-linear mixed
models (for an overview see Schabensberger and Pierce 2002)
shows that there is no reason why gene-to-phenotype models
could not be merely advanced statistical models.
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